Опыт штерна распределение скоростей по максвеллу кратко. Скорости газовых молекул

Опыт штерна распределение скоростей по максвеллу кратко. Скорости газовых молекул

Из формул

получаем формулу для расчета средней квадратичной скорости движения молекул одноатомного газа:

где R - универсальная газовая постоянная.

Таким образом зависит от температуры и природы газа. Так, при 0°С для водорода она равна 1800 м/с. для азота - 500 м/с.

Впервые на опыте определил скорость молекул О. Штерн. В камере, из которой откачан воздух, находятся два коаксиальных цилиндра 1 и 2 (рис. 1), которые могут вращаться вокруг оси с постоянной угловой скоростью .

Вдоль оси натянута платиновая посеребренная проволока, через которую пропускают электрический ток. Она нагревается, и серебро испаряется. Атомы серебра через щель 4 в стенке цилиндра 2 попадают в цилиндр 1 и оседают на его внутренней поверхности, оставляя след в виде узкой полоски, параллельной щели. Если цилиндры неподвижны, то полоска расположена напротив щели (точка В на рис. 2, а) и имеет одинаковую толщину.

При равномерном вращении цилиндра с угловой скоростью полоска смещается в сторону, противоположную вращению, на расстояние s относительно точки В (рис. 2, б). На такое расстояние сместилась точка В цилиндра 1 за время t, которое необходимо, чтобы атомы серебра прошли расстояние, равное R - r, где R и r - радиусы цилиндров 1 и 2.

где - линейная скорость точек поверхности цилиндра 1. Отсюда

Скорость атомов серебра

Зная R, r, и измерив экспериментально s, по этой формуле можно рассчитать среднюю скорость движения атомов серебра. В опыте Штерна . Это значение совпадает с теоретическим значением средней квадратичной скорости молекул. Это служит экспериментальным доказательством справедливости формулы (1), а следовательно, и формулы (3).

В опыте Штерна было обнаружено, что ширина полоски на поверхности вращающегося цилиндра гораздо больше геометрического изображения щели и толщина ее в разных местах неодинакова (рис. 3, а). Это можно объяснить только тем, что атомы серебра движутся с различными скоростями. Атомы, летящие с некоторой скоростью, попадают в точку В’. Атомы, летящие быстрее, попадают в точку, лежащую на рисунке 2 выше точки В’, а летящие медленнее, - ниже точки В’. Таким образом, каждой точке изображения соответствует определенная скорость, которую достаточно просто определить из опыта. Этим и объясняется то, что толщина слоя атомов серебра, осевших на поверхности цилиндра, не везде одинакова. Наибольшая толщина в средней части слоя, а по краям толщина уменьшается.

Изучение формы сечения полоски осевшего серебра с помощью микроскопа показало, что она имеет вид, примерно соответствующий изображенному на рисунке 3, б. По толщине отложившегося слоя можно судить о распределении атомов серебра по скоростям.

Разобьем весь интервал измеренных на опыте скоростей атомов серебра на малые . Пусть - одна из скоростей этого интервала. По плотности слоя подсчитаем число атомов, имеющих скорость в интервале от , и построим график функции

где N - общее число атомов серебра, осевших на поверхности цилиндра. Получим кривую, изображенную на рисунке 4. Она называется функцией распределения молекул по скоростям.

Площадь заштрихованной площадки равна

т.е. равна относительному числу атомов, имеющих скорость в пределах

Мы видим, что числа частиц, имеющих скорость из разных интервалов , резко различны. Существует какая-то скорость, около значения которой находятся скорости, с которыми движется наибольшее число молекул. Она называется наиболее вероятной скоростью , и ей соответствует максимум на рисунке 4. Эта кривая хорошо соответствует кривой, полученной Дж. Максвеллом, который, пользуясь статистическим методом, теоретически доказал, что в газах, находящихся в состоянии термодинамического равновесия, устанавливается некоторое, не меняющееся со временем, распределение молекул по скоростям, которое подчиняется вполне определенному статистическому закону, графически изображаемому кривой . Наиболее вероятная скорость, как показал Максвелл, зависит от температуры газа и массы его молекул по формуле

1 - платиновая проволока с нанесённым на неё слоем серебра; 2 - щель, формирующая пучок атомов серебра; 3 - пластинка, на которой осаждаются атомы серебра; П и П1 - положения полосок осажденного серебра при неподвижном приборе и при вращении прибора.

Для проведения опыта Штерном был подготовлен прибор, состоящий из двух цилиндров разного радиуса, ось которых совпадала и на ней располагалась платиновая проволока с нанесённым слоем серебра . В пространстве внутри цилиндров посредством непрерывной откачки воздуха поддерживалось достаточно низкое давление . При пропускании электрического тока через проволоку достигалась температура плавления серебра, из-за чего серебро начинало испаряться и атомы серебра летели к внутренней поверхности малого цилиндра равномерно и прямолинейно со скоростью v {\displaystyle v} , определяемой температурой нагрева платиновой проволоки, то есть температурой плавления серебра. Во внутреннем цилиндре была проделана узкая щель, через которую атомы могли беспрепятственно пролетать далее. Стенки цилиндров специально охлаждались, что способствовало оседанию попадающих на них атомов. В таком состоянии на внутренней поверхности большого цилиндра образовывалась достаточно чёткая узкая полоса серебряного налёта, расположенная прямо напротив щели малого цилиндра. Затем всю систему начинали вращать с некой достаточно большой угловой скоростью ω {\displaystyle \omega } . При этом полоса налёта смещалась в сторону, противоположную направлению вращения, и теряла чёткость. Измерив смещение s {\displaystyle s} наиболее тёмной части полосы от её положения, когда система покоилась, Штерн определил время полёта, через которое нашёл скорость движения молекул:

t = s u = l v ⇒ v = u l s = ω R b i g (R b i g − R s m a l l) s {\displaystyle t={\frac {s}{u}}={\frac {l}{v}}\Rightarrow v={\frac {ul}{s}}={\frac {\omega R_{big}(R_{big}-R_{small})}{s}}} ,

где s {\displaystyle s} - смещение полосы, l {\displaystyle l} - расстояние между цилиндрами, а u {\displaystyle u} - скорость движения точек внешнего цилиндра.

Найденная таким образом скорость движения атомов серебра (584 м/с) совпала со скоростью, рассчитанной по законам молекулярно-кинетической теории, а тот факт, что получившаяся полоска была размытой, свидетельствовал в пользу того, что скорости атомов различны и распределены по некоторому закону - закону распределения Максвелла : атомы, двигавшиеся быстрее, смещались относительно полосы, полученной в состоянии покоя, на меньшие расстояния, чем те, которые двигались медленнее. При этом опыт давал лишь приблизительные сведения о характере распределения Максвелла, более точное экспериментальное подтверждение относится к 1930 году (

В 1920 году физиком Отто Штерном (1888-1969) впервые были экспериментально определены скорости частиц вещества.

Прибор Штерна состоял из двух цилиндров разных радиусов, закрепленных на одной оси. Воздух из цилиндров был откачен до глубокого вакуума. Вдоль оси натягивалась платиновая нить, покрытая тонким слоем серебра. При пропускании по нити электрического тока она нагревалась до высокой температуры, и серебро с ее поверхности испарялось (рис. 1.7).

Рис. 1.7. Схема опыта Штерна.

В стенке внутреннего цилиндра была сделана узкая продольная щель, через которую проникали движущиеся атомы металла, осаждаясь на внутренней поверхности внешнего цилиндра, образуя хорошо наблюдаемую тонкую полоску прямо напротив прорези.

Цилиндры начинали вращать с постоянной угловой скоростью. Теперь атомы, прошедшие сквозь прорезь, оседали уже не прямо напротив щели, а смещались на некоторое расстояние, так как за время их полета внешний цилиндр успевал повернуться на некоторый угол (рис. 1.8). При вращении цилиндров с постоянной скоростью, положение полоски, образованной атомами на внешнем цилиндре, смещалось на некоторое расстояние.

Рис.1.8. 1 – Здесь оседают частицы, когда установка неподвижна. 2 – Здесь оседают частицы при вращении установки.

Зная величины радиусов цилиндров, скорость их вращения и величину смещения легко найти скорость движения атомов (рис. 1.9).

(1.34)

Время полета атома t от прорези до стенки внешнего цилиндра можно найти, разделив путь, пройденный атомом и равный разности радиусов цилиндров, на скорость атома v. За это время цилиндры повернулись на угол φ, величину которого найдем, умножив угловую скорость ω на время t. Зная величину угла поворота и радиус внешнего цилиндра R 2 , легко найти величину смещения l и получить выражение, из которого можно выразить скорость движения атома (1.34, d).

При температуре нити 1200 0 С среднее значение скорости атомов серебра, полученное после обработки результатов опытов Штерна, оказалось близким к 600 м/с, что вполне соответствует значению средней квадратичной скорости, вычисленному по формуле (1.28).

1.7.6. Уравнение состояния для газа Ван-дер Вальса.

Уравнение Клапейрона-Менделеева достаточно хорошо описывает газ при высоких температурах и низких давлениях, когда он находится в условиях достаточно далёких от условий конденсации. Однако для реального газа это не всегда выполняется и тогда приходится учитывать потенциальную энергию взаимодействия молекул газа между собой. Простейшим уравнением состояния, описывающим неидеальный газ, является уравнение, предложенное в 1873 г. Иоханнесом Дидериком Ван-дер-Ваальсом (1837 - 1923):


Пусть на молекулы газа действуют силы притяжения и отталкивания. И те, и другие силы действуют на небольших расстояниях, но силы притяжения убывают медленнее сил отталкивания. Силы притяжения относятся к взаимодействию молекулы с её ближайшим окружением, а сила отталкивания - проявляется в момент столкновения двух молекул. Силы притяжения внутри газа в среднем скомпенсированы для каждой отдельной молекулы. На молекулы, расположенные в тонком слое вблизи стенки сосуда, действует сила притяжения со стороны других молекул, направленная внутрь газа, которая создает давление, добавочное к создаваемому самой стенкой. Это давление иногда называют внутренним давлением . Суммарная сила внутреннего давления, действующая на элемент поверхностного слоя газа должна быть пропорциональна числу молекул газа в этом элементе и также числу молекул в слое газа, непосредственно примыкающему к рассматриваемому элементу поверхностного слоя. Толщина этих слоёв определяется радиусом действия сил притяжения и имеет тот же порядок величины. При увеличении концентрации молекул газа в раз, сила притяжения, приходящаяся на единицу площади приповерхностного слоя, возрастёт в раз. Поэтому величина внутреннего давления растёт пропорционально квадрату концентрации молекул газа. Тогда для суммарного давления внутри газа можно записать.

Лекция 5

В результате многочисленных соударений молекул газа между собой (~10 9 столкновений за 1 секунду) и со стенками сосуда, устанавливается некоторое статистическое распределение молекул по скоростям. При этом все направления векторов скоростей молекул оказываются равновероятными, а модули скоростей и их проекции на координатные оси подчиняются определенным закономерностям.

При столкновениях скорости молекул изменяются случайным образом. Может оказаться, что одна из молекул в ряде столкновений будет получать энергию от других молекул и ее энергия будет значительно больше среднего значения энергии при данной температуре. Скорость такой молекулы будет большая, но, все-таки она будет иметь конечное значение, так как максимально возможная скорость – скорость света - 3·10 8 м/с. Следовательно, скорость молекулы вообще может иметь значения от 0 до некоторой υ max . Можно утверждать, что очень большие скорости по сравнению со средними значениями, встречаются редко, также как и очень малые.

Как показывают теория и опыты распределение молекул по скоростям не случайное, а вполне определенное. Определим сколько молекул, или какая часть молекул обладает скоростями, лежащими в некотором интервале вблизи заданной скорости.

Пусть в данной массе газа содержится N молекул, при этом dN молекул обладают скоростями, заключенными в интервале от υ до υ +. Очевидно, что это число молекул dN пропорционально общему числу молекул N и величине заданного интервала скорости

где a - коэффициент пропорциональности.

Также очевидно, что dN зависит и от величины скорости υ , так как в одинаковых по величине интервалах, но при разных абсолютных значениях скорости число молекул будет различным (пример: сравните число живущих в возрасте 20 – 21 год и 99 – 100 лет). Это значит, что коэффициент a в формуле (1) должен быть функцией скорости.

С учетом этого перепишем (1) в виде

(2)

Из (2) получим

(3)

Функция f (υ ) называется функцией распределения. Ее физический смысл следует из формулы (3)

если (4)

Следовательно, f (υ ) равна относительной доле молекул, скорости которых заключены в единичном интервале скоростей вблизи скорости υ . Более точно функция распределения имеет смысл вероятности любой молекуле газа иметь скорость, заключенную в единичном интервале вблизи скорости υ . Поэтому ее называют плотностью вероятности .

Проинтегрировав (2) по всем значениям скоростей от 0 до получим

(5)

Из (5) следует, что

(6)

Уравнение (6) называется условием нормировки функции. Оно определяет вероятность того, что молекула имеет одно из значений скорости от 0 до . Скорость молекулы имеет какое-нибудь значение: это событие достоверное и его вероятность равна единице.



Функция f (υ ) была найдена Максвеллом в 1859 году. Она была названа распределением Максвелла :

(7)

где A – коэффициент, который не зависит от скорости, m – масса молекулы, T – температура газа. Используя условие нормировки (6) можно определить коэффициент A :

Взяв этот интеграл, получим A :

С учетом коэффициента А функция распределения Максвелла имеет вид:

(8)

При возрастании υ множитель в (8) изменяется быстрее, чем растет υ 2 . Поэтому функция распределения (8) начинается в начале координат, достигает максимума при некотором значении скорости, затем уменьшается, асимптотически приближаясь к нулю (рис.1).

Рис.1. Максвелловское распределение молекул

по скоростям. T 2 > T 1

Используя кривую распределения Максвелла можно графически найти относительное число молекул, скорости которых лежат в заданном интервале скоростей от υ до (рис.1, площадь заштрихованной полоски).

Очевидно, что вся площадь, находящаяся под кривой дает общее число молекул N . Из уравнения (2) с учетом (8) найдем число молекул, скорости которых лежат в интервале от υ до

(9)

Из (8) также видно, что конкретный вид функции распределения зависит от рода газа (масса молекулы m ) и от температуры и не зависит от давления и объема газа.

Если изолированную систему вывести из состояния равновесия и предоставить самой себе, то через некоторый промежуток времени она вернется в состояние равновесия. Этот промежуток времени называется временем релаксации . Для различных систем он различный. Если газ находится в равновесном состоянии, то распределение молекул по скоростям не изменяется с течением времени. Скорости отдельных молекул беспрерывно изменяются, однако число молекул dN , скорости которых лежат в интервале от υ до все время остается постоянным.

Максвелловское распределение молекул по скоростям всегда устанавливается, когда система приходит в состояние равновесия. Движение молекул газа хаотичное. Точное определение хаотичности тепловых движений следующее: движение молекул полностью хаотично, если скорости молекул распределены по Максвеллу . Отсюда следует, что температура определяется средней кинетической энергией именно хаотичных движений . Как бы ни велика была бы скорость сильного ветра, она не сделает его «горячим». Ветер даже самый сильный, может быть и холодным и теплым, потому что температура газа определяется не направленной скоростью ветра, а скоростью хаотического движения молекул.

Из графика функции распределения (рис.1) видно, что число молекул, скорости которых лежат в одинаковых интервалах dυ , но вблизи различных скоростей υ , больше в том случае если скорость υ приближается к скорости, которая соответствует максимуму функции f (υ ). Эта скорость υ н называется наивероятнейшей (наиболее вероятной).

Продифференцируем (8) и приравняем производную к нулю:

Так как ,

то последнее равенство выполняется когда:

(10)

Уравнение (10) выполняется при:

И

Первые два корня соответствуют минимальным значениям функции. Тогда скорость, которая соответствует максимуму функции распределения, найдем из условия:

Из последнего уравнения:

(11)

где R – универсальная газовая постоянная, μ – молярная масса.

С учетом (11) из (8) можно получить максимальное значение функции распределения

(12)

Из (11) и (12) следует, что при повышении T или при уменьшении m максимум кривой f (υ ) сдвигается вправо и становится меньше, однако площадь под кривой остается постоянной (рис.1).

Для решения многих задач удобно пользоваться распределением Максвелла в приведенном виде. Введем относительную скорость:

где υ – данная скорость, υ н – наивероятнейшая скорость. С учетом этого уравнение (9) принимает вид:

(13)

(13) – универсальное уравнение. В таком виде функция распределения не зависит ни от рода газа, ни от температуры.

Кривая f (υ ) ассиметрична. Из графика (рис.1) видно, что большая часть молекул имеет скорости большие, чем υ н . Асимметрия кривой означает, что средняя арифметическая скорость молекул не равна υ н . Средняя арифметическая скорость равна сумме скоростей всех молекул, деленная на их число:

Учтем, что согласно (2)

(14)

Подставив в (14) значение f (υ ) из (8) получим среднюю арифметическую скорость:

(15)

Средний квадрат скорости молекул получим, вычислив отношение суммы квадратов скоростей всех молекул к их числу:

После подстановки f (υ ) из (8) получим:

Из последнего выражения найдем среднюю квадратичную скорость:

(16)

Сопоставляя (11), (15) и (16) можно сделать вывод, что, и одинаково зависят от температуры и отличаются только численными значениями: (рис.2).

Рис.2. Распределение Максвелла по абсолютным значениям скоростей

Распределение Максвелла справедливо для газов находящихся в состоянии равновесия, рассматриваемое число молекул должно быть достаточно большим. Для малого числа молекул могут наблюдаться значительные отклонения от распределения Максвелла (флуктуации).

Первое опытное определение скоростей молекул провел Штерн в 1920 году. Прибор Штерна состоял из двух цилиндров разных радиусов, закрепленных на одной оси. Воздух из цилиндров был откачен до глубокого вакуума. Вдоль оси натягивалась платиновая нить, покрытая тонким слоем серебра. При пропускании по нити электрического тока она нагревалась до высокой температуры (~1200 о С), что приводило к испарению атомов серебра.

В стенке внутреннего цилиндра была сделана узкая продольная щель, через которую проходили движущиеся атомы серебра. Осаждаясь на внутренней поверхности внешнего цилиндра, они образовывали хорошо наблюдаемую тонкую полоску прямо напротив прорези.

Цилиндры начинали вращать с постоянной угловой скоростью ω. Теперь атомы, прошедшие сквозь прорезь, оседали уже не прямо напротив щели, а смещались на некоторое расстояние, так как за время их полета внешний цилиндр успевал повернуться на некоторый угол. При вращении цилиндров с постоянной скоростью, положение полоски, образованной атомами на внешнем цилиндре, смещалось на некоторое расстояние l .

В точке 1 оседают частицы, когда установка неподвижна, при вращении установки частицы оседают в точке 2.

Полученные значения скоростей подтвердили теорию Максвелла. Однако о характере распределения молекул по скоростям этот метод давал приблизительные сведения.

Более точно распределение Максвелла было проверено опытами Ламмерта, Истэрмана, Элдриджа и Коста . Эти опыты достаточно точно подтвердили теорию Максвелла.

Прямые измерения скорости атомов ртути в пучке были выполнены в 1929 году Ламмертом . Упрощенная схема этого эксперимента показана на рис. 3.

Рис.3. Схема опыта Ламмерта
1 - быстро вращающиеся диски, 2 - узкие щели, 3 - печь, 4 - коллиматор, 5 - траектория молекул, 6 – детектор

Два диска 1, насаженные на общую ось, имели радиальные прорези 2, сдвинутые друг относительно друга на угол φ . Напротив щелей находилась печь 3, в которой нагревался до высокой температуры легкоплавкий металл. Разогретые атомы металла, в данном случае ртути, вылетали из печи и с помощью коллиматора 4 направлялись в необходимом направлении. Наличие двух щелей в коллиматоре обеспечивало движение частиц между дисками по прямолинейной траектории 5. Далее атомы, прошедшие прорези в дисках, регистрировались с помощью детектора 6. Вся описанная установка помещалась в глубокий вакуум.

При вращении дисков с постоянной угловой скоростью ω, через их прорези беспрепятственно проходили только атомы, имевшие некоторую скорость υ . Для атомов, проходящих обе щели должно выполняться равенство:

где Δt 1 - время пролета молекул между дисками, Δt 2 - время поворота дисков на угол φ . Тогда:

Изменяя угловую скорость вращения дисков можно было выделять из пучка молекулы, имеющие определенную скорость υ , и по регистрируемой детектором интенсивности судить об относительном содержании их в пучке.

Таким способом удалось экспериментально проверить Максвелловский закон распределения молекул по скоростям.

Муниципальное общеобразовательное учреждение гимназия №1

Центрального района г. Волгограда

Урок физики по теме

Движение молекул. Опытное определение скоростей движения молекул

10 класс

Подготовила: учитель физики высшей категории

Петрухина

Марина Анатольевна.

УМК: Н. С. Пурышева,

Н. Е. Важеевская,

Д. А. Исаев

«Физика – 10», рабочая тетрадь к данному учебнику и мультимедийное приложение к учебнику.

Волгоград, 2015

Урок по теме

Движение молекул.

Опытное определение скоростей движения молекул

10 класс

Аннотация .

Понимание важнейших вопросов современной физики невозможно без некоторых, хотя бы самых элементарных представлений о статистических закономерностях. Рассмотрение газа как системы, состоящей из огромного числа частиц, позволяет в доступной форме дать представление о вероятности, статистическом характере закономерностей таких систем, о статистических распределениях, указывающих, с какой вероятностью частицы системы имеют то или иное значение параметров, определяющих их состояние, и на основе этого излагать основные положения классической теории газов. К одному из уроков, которые позволяют сформировать данное представление, относится представленный урок по УМК издательства «Дрофа»: учебник физики Н. С. Пурышева, Н. Е. Важеевская, Д. А. Исаев, рабочая тетрадь к данному учебнику и мультимедийное приложение к учебнику.

Пояснительная записка.

Данный урок можно провести в процессе изучения темы «Основы МКТ строения вещества» в 10 классе.

Новый материал урока позволяет углубить знания учащихся об основах кинетической теории газов и использовать его при решении задач на определение скоростей молекул различных газов.

Каждый этап урока сопровождается показом тематического слайда мультимедийного приложения и видеофрагментом.

Цель урока:

Деятельностная: формирование у учащихся новых способов деятельности (умение задавать и отвечать на действенные вопросы; обсуждение проблемных ситуаций; умение оценивать свою деятельность и свои знания).

Задачи урока:

Обучающая: формирование умения анализировать, сравнивать, переносить знания в новые ситуации, планировать свою деятельность при построении ответа, выполнении заданий и поисковой деятельности через физические понятия (наиболее вероятная скорость, средняя скорость, средняя квадратичная скорость), активизировать мыслительную деятельность учащихся.

Воспитывающая: воспитание дисциплинированности при выполнении групповых заданий, создание условия для положительной мотивации при изучении физики, используя разнообразные приемы деятельности, сообщая интересные сведения; воспитывать чувство уважения к собеседнику, индивидуальной культуры общения.

Развивающая: развивать умения строить самостоятельные высказывания в устной речи на основе усвоенного учебного материала, развитие логического мышления, развитие умения единого математического подхода для количественного описания физических явлений на основе молекулярных представлений при решении задач.

Тип урока: урок изучения нового материала.

Методы обучения: эвристический, объяснительно – иллюстративный, проблемный, демонстрации и практические задания, решение задачи физического содержания.

Ожидаемые результаты:

    уметь делать вывод на основе эксперимента;

    вырабатывать правила дискуссии и соблюдать их;

    понимать смысл обсуждаемых вопросов и проявлять интерес к данной теме.

Подготовительный этап: знание основных уравнений, зависимостей по данной теме (теоретический блок по теме находится у каждого ученика в виде лекции - конспекта)

Оборудование: прибор для демонстрации опыта Штерна;

компьютер и проектор для демонстрации презентации и видеофрагмента «Опыт Штерна».

Этапы урока.

    Организационный этап (приветствие, проверка готовности к уроку, эмоционального настроя), (1 минута)

    Этап постановки цели, задач урока и проблемы о способе измерения скорости молекул, (4 минуты)

    Этап изучения нового учебного материала, показ слайдов презентации с комментариями учащихся, которая позволяет создать зрительное впечатление о теме, активизировать зрительную память (проверить уровень усвоения системы понятий по данной теме), (20минут)

    Этап закрепления приобретенных знаний при решении задач (применение знаний на практике их вторичное осмысление), (8минут)

    Этап обобщения и подведения итогов урока (дать анализ успешности овладения знаниями и способами деятельности), (4минуты)

    Информация о домашнем задании (направлено на дальнейшее развитие знаний), (1минута)

    Рефлексия, (2 минуты)

Сценарий урока.

Деятельность учителя физики

Деятельность ученика

    Организационный этап.

Здравствуйте, ребята! Я рада приветствовать вас на уроке, на котором мы продолжим открывать страницы в познании классической теории газов. Впереди нас ждут интересные открытия. Поприветствуйте друг друга.

Тогда приступим…

    Целеполагание и мотивация.

На прошлом уроке мы познакомились с основными положениями молекулярно – кинетической теории идеального газа. Участвуя в непрерывном хаотическом движении, молекулы постоянно сталкиваются друг с другом, при этом число сталкивающихся частиц их скорости в каждый момент времени различны.

Как вы думаете, какая тема урока «ожидает» нас сегодня?

Да, действительно, цель, которую мы ставим сегодня перед собой: познакомимся с одним из методов определения скорости движения молекул – методом молекулярных пучков, предложенным немецким физиком Отто Штерном в 1920 году.

Открыли тетради, записали число и тему сегодняшнего урока: Движение молекул. Опытное определение скоростей движения молекул.

Вспомним, чему равна скорость теплового движения молекул?

Рассчитаем скорость молекул серебра Аg при испарении с поверхности, T =1500К.

Напомню, скорость звука 330м/с, а скорость молекул серебра 588м/с, сравните.

Рассчитаем скорость молекул водорода Н 2 при температуре, близкой к абсолютному нулю T=28К.

Для примера: скорость пассажирского самолета – 900м/с, скорость движения Луны вокруг Земли – 1000м/с.

А теперь поставите себя на место ученых 19 века, когда были получены эти данные, возникли сомнения в правильности самой кинетической теории. Ведь известно, что запахи распространяются довольно медленно: нужно время порядка десятков секунд, чтобы запах духов, пролитых в одном углу комнаты, распространяются до другого угла.

Поэтому возникает вопрос: какова на самом деле скорость молекул?

Когда запах духов распространяется, мешает ли что-то молекулам духов?

Как это влияет на скорость направленного движения молекул?

Рассчитаем скорость молекул водорода Н 2 при температуре, близкой к комнатной T=293К.

Тогда, это скорость какая? Чего?

А как же её измерить, определить её значение на практике? Давайте решим следующую задачу:

Пусть имеется 1 молекула. Нужно определить скорость свободного пробега молекул. Как движутся молекулы между столкновениями?

Пусть молекула проходит 1 метр, время найдем при скорости водорода 1911м/с, получилось 0,00052с.

Как видно время очень маленькое.

Возникает опять проблема!

    Этап изучения нового учебного материала.

Решить эту проблему в школьных условиях невозможно, за нас это сделал в 1920 г Отто Штерн (1888-1970), заменив поступательное движение на вращательное.

Посмотрим небольшой видеофрагмент и после обсудим некоторые вопросы.

    Что представляла установка, которой пользовался О. Штерн?

    Как был осуществлен опыт?

Значения скоростей получались близкими к скорости, вычисленной по формуле:

,
,
где – линейная скорость точек поверхности цилиндра В.

, то

, что находится в согласии с молекулярно – кинетической теорией. Скорость молекул совпадает с рассчитанной, полученной на основе МКТ, это являлось одним из подтверждением её справедливости.

Из опыта О. Штерна было найдено, что при температуре 120 0 С скорости большинства атомов серебра лежат в пределах от 500м/с до 625м/с. При изменении условий опыта, например температуры вещества, из которого сделана проволока, получаются иные значения скоростей, но характер распределения атомов в напыленном слое не меняется.

    Почему в опыте Штерна полоска серебра смещена и размыта по краям, кроме того, неоднородна по толщине?

    Какой вывод можно сделать о распределении атомов и молекул по скоростям?

Рассмотрим таблицу №12 учебника на стр. 98 для молекул азота. Что видно из таблицы?

Английский физик Д. К. Максвелл тоже считал невероятным, что все молекулы движутся с одной скоростью. По его мнению, при каждой заданной температуре большинство молекул обладает скоростями, лежащими в довольно узких пределах, но некоторые молекулы могут двигаться с большей или меньшей скоростью. Более того, считал ученый, в каждом объеме газа при той или иной температуре есть молекулы, обладающие как очень малыми, так и очень большими скоростями. Сталкиваясь между собой, одни молекулы увеличивают скорость, а другие уменьшают. Но если газ находится в стационарном состоянии, то число молекул, обладающих той или иной скоростью, остается постоянным. Исходя из такого представления, Д. Максвелл исследовал вопрос о распределении молекул по скоростям в газе, находящемся в стационарном состоянии.

Эту зависимость он установил задолго до опытов О. Штерна. Результаты работы Д. К. Максвелла получили всеобщее признание, но при этом не были подтверждены экспериментально. Это сделал О. Штерн.

    Подумайте? Какова заслуга О. Штерна?

Рассмотрим рис. 64 на стр. 99 учебника и исследуем характер самого распределения молекул по скоростям.

Вид функции распределения молекул по скорости движения, которую Д. Максвелл определил теоретическим путем, качественно совпал с профилем налета атомов серебра на латунной пластинке в опыте О.Штерна.

Изучение профиля полоски серебра позволило ученому сделать вывод о существовании наиболее вероятной средней скорости движения частиц (т.е. скорости с которой движется наибольшее число молекул).

    Куда смещается максимум кривой распределения при повышении температуры?

Кроме наиболее вероятной и средней скоростях, движение молекул характеризуется средним квадратом скорости:

, а квадратный корень из этой величины – есть средняя квадратичная скорость.

    Давайте еще раз посмотрим, как происходило познание при изучении вопроса о скоростях движения молекул?

    Этап закрепления приобретенных знаний при решении задач.

Произведем математические расчеты и проверим теорию в конкретной ситуации.

Задача №1

Какой скоростью обладала молекула паров серебра, если её угловое смещение в опыте Штерна составляло 5,4º при частоте вращения прибора 150 сˉ¹? Расстояние между внутренним и внешним цилиндрами равно 2 см.

    Этап обобщения и подведение итогов урока

Сегодня на уроке мы познакомились с одним из методов определения скорости движения молекул – методом молекулярных пучков, предложенным немецким физиком Отто Штерном.

    Каково значение опыта О. Штерна в развитии представлений о строении вещества?

    Информация о домашнем задании.

    Рефлексия.

В ходе нашего урока вы показали себя наблюдательными теоретиками, способными не только подмечать вокруг себя все новое и интересное, но и самостоятельно проводить научное исследование.

Наш урок подошёл к концу.

Давайте ответим на вопрос: «Что вам понравилось на уроке?» и «Чем вам запомнился урок?»

А я в заключение, хочу процитировать слова Вирея:

«Все открытия в науках и в философии проистекают часто от обобщений или от приложений факта к другим подобным фактам»

Спасибо, ребята, за совместную работу. Я была рада встретиться с вами. До встречи!

Тема урока: Определение скорости движения молекул.

(обучающиеся записывают в тетради число и тему урока)

(ответы нескольких учеников)

, с другой стороны

, зная что
, отсюда

, или
, где

– универсальная газовая постоянная,
8,31

Скорость молекул серебра сверхзвуковая .

590м/с, такая же!!! Не может быть!

Какую скорость находить и измерять?

Мешают молекулы воздуха.

Она уменьшается.

Мы получили большую скорость, и ничего не мешает двигаться молекулам?

Скорость свободного пробега молекул.

Равномерно.

Как же его измерить?

(просмотр видео)

Установка состояла из: платиновой нить, покрытой тонким слоем серебра, которая располагалась вдоль оси внутри цилиндра радиусом и внешнего цилиндра . Из цилиндра насосом откачен воздух.

При пропускании электрического тока через проволоку она разогревалась до температуры, выше температуры плавления серебра 961,9 0 С. Стенки внешнего цилиндра охлаждались, чтобы молекулы серебра лучше оседали на пути экрана. Установку приводили во вращение с угловой скоростью 2500 – 2700 об/мин.


Полоска серебра при вращении прибора приобрела другой вид потому что, если бы все атомы, вылетающие из нити, имели одинаковую скорость, то изображение щели на экране не изменилось бы по форме и размеру, а лишь немного бы сместилось в сторону. Размытость же полоски из серебра говорит о том, что вылетающие из раскаленной нити атомы движутся с разными скоростями. Атомы, движущиеся быстро, смещаются меньше, чем атомы, движущиеся с меньшей скоростью.

Распределение атомов и молекул по скоростям представляет собой определенную закономерность, характеризующую их движение.

Из таблицы видно, что наибольшее число молекул азота имеют скорости от 300м/с до 500м/с.

91% молекул имеют скорости, включенных в интервал от 100м/с до 700м/с.

9% молекул имеют скорости, меньших 100м/с и больших 700м/с.

О. Штерн, воспользовавшись методом молекулярных пучков, изобретенным французским физиком Луи Дюнойе (1911г.) измерил скорость газовых молекул и на опыте подтвердил полученное Д. К. Максвеллом распределение молекул газа по скоростям. Результаты опыта Штерна подтвердили правильность оценки средней скорости атомов, которая вытекает из распределения Максвелла.


По графику можно было определить смещение для середины изображения щели и, соответственно, вычислить среднюю скорость движения атомов.


При Т 2  Т 1 максимум кривой распределения смещается в область больших значений скоростей.

    Вначале была высказана гипотеза о том, что молекулы движутся с разными скоростями.

    Эти скорости связаны с температурой и существует определенный закон распределения молекул по скоростям, что следовало из наблюдений, в частности, броуновского движения.

    Опыт относится к числу фундаментальных физических экспериментов. В настоящее время атомно – молекулярное учение подтверждено многочисленными опытами и является общепризнанным.

    Рефлексия учебных действий.

    Сегодня я узнал…

    Было интересно…

    Было трудно…

    Я понял, что…Я научился…

    Меня удивило…

    Используемая литература:

    1. Н. С. Пурышева, Н. Е. Важеевская, Д. А. Исаев, учебник «Физика – 10», рабочая тетрадь к данному учебнику.

      Физика: 3800 задач для школьников и поступающих ВУЗы. – М.: Дрофа, 2000г.

      Рымкевич А.П. Сборник задач по физике. 10-11 кл. – М.: Дрофа, 2010.

      Л. А. Кирик “Самостоятельные и контрольные работы по физике”. 10 класс. М.:Илекса, Харьков: Гимназия, 1999.

      Энциклопедия для детей. Техника. М.: Аванта+, 1999.

      Энциклопедия для детей. Физика. Ч. I. М.: Аванта+, 1999.

      Энциклопедия для детей. Физика. Ч. П. М.: Аванта+, 1999.

      Физический эксперимент в школе./ Сост. Г. П. Мансветова, В. Ф. Гудкова. - М.: Просвещение, 1981.

      Глазунов А. Т. Техника в курсе физики средней школы. М.: Просвещение, 1977.

    Электронные приложения:

      Л. Я. Боревский «Курс физики XXI века», базовый + для школьников и абитуриентов. МедиаХауз. 2004 год.

      Интерактивный курс физики для 7 – 11 классов. ООО «Физикон», 2004 год. Русская версия «Живая физика», Институт новых технологий

      Физика, Х-ХI классы. Мультимедийный курс-М.: ООО «Руссобит Паблишинг».-2004 (http://www. russobit-m. ru/)

      Открытая физика. В 2 ч. (CD) / Под ред. С.М. Козела. – М.: ООО «Физикон». - 2002 (http://www.physicon.ru/.)