Количественный химический анализ воды методики. Химический анализ воды: когда все тайное становится явным

Количественный химический анализ воды методики. Химический анализ воды: когда все тайное становится явным

  • КХА вод. МВИ массовой концентрации ионов рения (VII) в питьевых, минеральных, природных (включая подземные и скважинные), морских и очищенных сточных водах методом переменнотоковой вольтамперометрии на анализаторе “ЭКОТЕСТ-ВА-4”

    МВИ
  • РЦэм 58-02 МКХА хозяйственно-бытовых и поверхностных вод на содержание диметилформамида методом газовой хроматографии
    Методика количественного химического анализа
  • КХА вод. МВИ массовой концентрации формальдегида в пробах питьевых и природных вод методом ВЭЖХ (Взамен нее внесена ФР.1.31.2013.13910)
    Методика количественного химического анализа
    МВИ
  • МКХА Воды сточные. Гравиметрический метод определения нефтепродуктов. N30-14-04-23
    Методика количественного химического анализа
  • Количественный химический анализ вод. Методика измерений массовой концентрации триэтиленгликоль-ди-(2-этилгексаноата) методом газовой хроматографии в сточных водах производства поливинилбутиральной пленки. МКХА МБУ ИЭС 001-16
    Методика количественного химического анализа
  • КХА. МВИ биохимического потребления кислорода в природных и сточных водах по изменению давления газовой фазы (манометрический метод)
    Методика количественного химического анализа
    МВИ
  • МКХА-ИХАВП-01-2012 Методика измерений содержания фторид-ионов, хлорид-ионов, нитрит-ионов, нитрат-ионов, фосфат-ионов, сульфат-ионов в пробах питьевых, природных, талых вод, почв, грунтов, донных отложений, отходов производства (бурового шлама) методом ионной хроматографии
    Методика количественного химического анализа
  • МВИ N 46-381-2010 Методы контроля. КХА. Железо хлорное (водный раствор). Массовая доля кислоты соляной. Методика измерений методом потенциометрического титрирования
    Методика количественного химического анализа
    МВИ
  • МКХА Определение массовой концентрации фтора в природных и сточных водах потенциометрическим методом
    Методика количественного химического анализа
  • МКХА "Никель (II) сернокислый 7-водный. Никель (II) сернокислый 6-водный. Определение массовой доли никеля титриметрическим методом
    Методика количественного химического анализа
  • Методика 46-380-2010 Методы контроля. КХА. Железо хлорное (водный раствор), выпускаемое по СТО 00203275-228-2009. Массовая доля нерастворимых в воде веществ. Методика измерений гравиметрическим методом
    Методика количественного химического анализа №46-380-2010
  • Методика измерений водородного показателя (рН) водных вытяжек почв, грунтов, донных отложений, отходов производства (бурового шлама) потенциометрическим методом. рН-01-2017
    Методика количественного химического анализа
  • Методика измерений массовой концентрации хлороформа в пробах воды плавательных бассейнов методом газожидкостной хроматографии. ГХВБ-01-2017
    Методика количественного химического анализа
  • Методика измерений массовых концентраций фенола и алкилфенолов в пробах питьевых, природных, талых, сточных и очищенных сточных вод методом высокоэффективной жидкостной хроматографии. ФВ-03-2017
    Методика количественного химического анализа
  • КХА вод. Методика измерений массовой концентрации железа (II) в питьевых, природных и сточных водах фотометрическим методом с о-фенантролином ПНД Ф 14.1:2:4.259-10 НДП 20.1:2:3.106-09
    Методика количественного химического анализа
    ПНД Ф
  • КХА вод. МВИ массовой концентрации ацетат-ионов в пробах природных и сточных вод методом капиллярного электрофореза аннулирована письмом N5/174 от 20.07.09 Взамен нее ФР.1.31.2009.06202
    Методика количественного химического анализа
    МВИ

Требования, предъявляемые к качеству воды, могут быть самыми различными и определяются её целевым назначением. Для оценки качества пластовых, природных и сточных вод их образцы подвергают анализу. На основании результатов анализа делаются выводы о пригодности воды для конкретного вида потребления, возможности применения тех или иных методов очистки. Анализы подземных вод позволяют прогнозировать сопутствующие месторождения полезных ископаемых. При анализе вод для характеристики их свойств определяют химические, физические и бактериологические показатели. Основными показателями, определяющими пригодность воды для определенной отрасли народного хозяйства, являются химические, так как физические (содержание взвешенных частиц, температура, цвет, запах, плотность, сжимаемость, вязкость, поверхностное натяжение) и бактериологические (наличие бактерий) показатели зависят от химического состава воды.

К химическим показателям качества воды относятся:

    жесткость;

    окисляемость;

    реакция среды;

    солевой состав;

    состав растворенных газов.

Общее солесодержание характеризует присутствие в воде минеральных и органических примесей, количество этих примесей в виде общей минерализации, сухого и плотного остатков. Общая минерализация представляет собой сумму всех найденных в воде анализом катионов и анионов. Минерализацию выражают в миллиграмм-эквивалентах солей, находящихся в I л воды, или в процентах, то есть числом граммов растворенных веществ, содержащихся в 100 г раствора. Сухим остатком называется суммарное количество нелетучих веществ, присутствующих в воде во взвешенном, коллоидном и растворенном состоянии, выраженное в мг/л. Сухой остаток определяют путем выпаривания пробы воды, последующего высушивания при 105 о С и взвешивания. Плотный остаток – это сухой остаток, определенный из профильтрованной пробы воды. Следовательно, разница двух показателей соответствует содержанию взвешенных веществ пробы. Если сухой остаток прокалить при температуре 500-600 о С, то масса его уменьшится и получится остаток, называемый золой. Уменьшение массы происходит за счет сгорания органических веществ, удаления кристаллизационной воды, разложения карбонатов. Потери при прокаливании приближенно относят за счет органических примесей.

Жесткость воды обусловливается наличием в ней ионов Са 2+ и Mg 2+ . Для большинства производств жесткость воды является основным показателем её качества. В жесткой воде плохо пенится мыло. При нагревании и испарении жесткой воды образуется накипь на стенках паровых котлов, труб, теплообменных аппаратов, что ведет к перерасходу топлива, коррозии металлов и авариям.

Жесткость количественно выражается числом миллиграмм-эквивалентов ионов кальция и магния в 1 л воды (мг-экв/л); 1 мг-экв/л жесткости соответствует содержанию в воде 20,04 мг/л ионов Са 2+ или

12,16 мг/л ионов Mg 2 + . Различают жесткость общую, карбонатную и некарбонатную.

Карбонатная жесткость связана с присутствием в воде в основном гидрокарбонатов и карбонатов кальция и магния, которые при кипячении воды переходят в нерастворимые средние или основные соли и выпадают в виде плотного осадка:

Ca(HCO 3 )=CaCO 3 ↓+H 2 O+CO 2

2Mg(HCO 3 ) 2 =(MgOH) 2 CO 3 ↓+3CO 2 +H 2 O

Таким образом, при кипячении карбонатная жесткость устраняется. Поэтому она называется также временной жесткостью. Следует сказать, что при переходе HCO 3 – в CO 3 2 – и при выпадении карбонатов кальция и магния в воде остается некоторое количество ионов Са 2+ , Mg 2+ , CO 3 2 – , соответствующее произведению растворимости СаСО 3 и (MgOH ) 2 CO 3 . В присутствии посторонних ионов растворимость этих соединений повышается.

Некарбонатная (постоянная) жесткость не разрушается кипячением. Она обусловливается присутствием в воде кальциевых и магниевых солей сильных кислот, главным образом сульфатов и хлоридов.

Общая жесткость воды представляет собой сумму карбонатной и некарбонатной жесткости и обусловливается суммарным содержанием в воде растворенных солей кальция и магния. По величине общей жесткости принята следующая классификация природных вод:

очень мягкие (<1,5 мг-экв/л), мягкие (1,5-3,0 мг-экв/л), средней жесткости (3,0-5,4 мг-экв/л), жесткие (5,4-10,7 мг-экв/л), очень жесткие (>10,7 мг-экв/л).

Если известны концентрации (мг/л) в воде Ca 2+ , Mg 2+ и HCO 3 – , то жесткость рассчитывается по следующим формулам:

Общая жесткость

Карбонатная жесткость равна концентрации (мг/л) [HCO 3 ]; в случае, если содержание ионов кальция и магния в воде выше, чем количество гидрокарбонатов:

, где 61,02 – эквивалентная масса иона HCO 3 – .

Если же количество гидрокарбонатов в воде превышает содержание ионов кальция и магния, то карбонатная жесткость соответствует общей жесткости. Разность между общей и карбонатной жесткостью составляет некарбонатную жесткость: Ж НК = Ж О – Ж К . Следовательно, Ж НК – это содержание Ca 2+ и Mg 2 + , эквивалентное концентрации всех остальных анионов, в том числе и некомпенсированных гидрокарбонатов.

Окисляемость характеризует содержание в воде восстановителей, к которым относятся органические и некоторые неорганические (сероводород, сульфиты, соединения двухвалентного железа и др.) вещества. Величина окисляемости определяется количеством затраченного окислителя и выражается числом миллиграммов кислорода, необходимого для окисления веществ, содержащихся в 1 л воды. Различают общую и частичную окисляемость. Общую окисляемость определяют обработкой воды сильным окислителем – бихроматом калия K 2 Cr 2 O 7 или йодатом калия KIO 3 . Частичную окисляемость определяют по реакции с менее сильным окислителем – перманганатом калия К MnO 4 . По этой реакции окисляются только сравнительно легко окисляющиеся вещества.

Для полного окисления содержащихся в воде органических веществ, при котором происходят превращения по схеме

[C]→CO 2

[H]→H 2 O

[P]→P 2 O 5

[S]→SO 3

[ N ]→ NH 4 + ,

требуется количество кислорода (или окислителя в расчете на кислород), называемое химическим потреблением кислорода (ХПК) и выражаемое в мг/л.

При любом методе определения ХПК вместе с органическими веществами окисляются и неорганические восстановители, содержащиеся в пробе. Тогда содержание неорганических восстановителей в пробе определяют отдельно специальными методами и результаты этих определений вычитают из найденного значения ХПК.

Реакция среды характеризует степень кислотности или щелочности воды. Концентрация водородных ионов природных вод зависит главным образом от гидролиза солей, растворенных в воде, количества растворенных угольной кислоты и сероводорода, содержания различных органических кислот. Обычно для большинства природных вод величина рН изменяется в пределах 5,5-8,5. Постоянство рН природных вод обеспечивается наличием в ней буферных смесей. Изменение значения рН свидетельствует о загрязнении природной воды сточными водами.

Солевой состав. При анализе природных вод определяют содержание в них преимущественно главных ионов: Cl , SO 4 2– , HCO 3 , CO 3 2– , Ca 2+ , Mg 2+ , K + , Na + .

Определение иона Cl . В основу определения иона хлора положен аргентометрический метод Мора. Принцип анализа заключается в том, что при прибавлении к воде раствора AgNO 3 образуется белый осадок хлорида серебра:

Cl + Ag + = AgCl↓

Определение хлорид-ионов ведут в интервале рН = 6,5 ÷ 10, чтобы одновременно с AgCl не выпадал осадок Ag 2 CO 3 . Проведению определения Сl мешает наличие в воде ионов брома, йода, сероводорода, от которых освобождаются предварительной обработкой воды.

Определение иона SO 4 2– . Метод определения сульфат-ионов основан на малой растворимости сульфата бария, количественно выпадающего в кислой среде при добавлении к воде раствора хлорида бария: Ba 2+ + SO 4 2– = BaSO 4

По массе образовавшегося осадка рассчитывают содержание иона SO 4 2– .

Определение ионов CO 3 2– и HCO 3 . Эти ионы определяют титрованием пробы воды растворами серной или соляной кислот последовательно с индикаторами фенолфталеином и метилоранжем. Реакция нейтрализации протекает в две стадии.

Первые порции кислоты вступают в реакции с карбонат-ионом, образуя гидрокарбонат-ион:

CO 3 2– + H + = HCO 3

Окраска фенолфталеина при рН = 8,4 переходит из розовой в бесцветную, что совпадает с таким состоянием раствора, когда в нем остаются лишь гидрокарбонаты. По количеству кислоты, пошедшей на титрование, рассчитывают содержание карбонат-иона. Расход кислот на титрование с фенолфталеином эквивалентен содержанию половины карбонатов, т.к. последние нейтрализуются только наполовину до HCO 3 – . Поэтому общее количество CO 3 2 – эквивалентно удвоенному количеству кислоты, затраченной на титрование. При дальнейшем титровании в присутствии метилоранжа происходит реакция нейтрализации гидрокарбонатов:

HCO 3 + H + → CO 2 + H 2 O

Метилоранж меняет окраску при pH = 4,3, т.е. в момент, когда в растворе остается только свободный диоксид углерода.

При расчете содержания ионов HCO 3 – в воде следует из количества кислоты, пошедшей на титрование с метилоранжем, вычесть количество кислоты, идущей на титрование с фенолфталеином. Общее количество кислоты, затраченной на нейтрализацию ионов ОН , СО 3 2– и НСО 3 , характеризует общую щелочность воды. Если рН воды ниже 4,3, то её щелочность равна нулю.

Определение ионов Ca 2+ , Mg 2+ . Имеется несколько методов обнаружения и определения содержания ионов Са 2+ и Mg 2+ . При добавлении в воду оксалата аммония (NH 4 ) 2 C 2 O 4 в случае присутствия ионов кальция образуется белый осадок оксалата кальция:

Ca 2+ + C 2 O 4 2– = CaC 2 O 4

После отделения осадка оксалата кальция в воде можно определить ионы Mg 2+ с помощью раствора гидрофосфата натрия Na 2 HPO 4 и аммиака. При наличии иона Mg 2 + образуется мелкокристаллический осадок соли магния:

Mg 2+ + HPO 4 2– + NH 3 = MgNH 4 PO 4

Полученные осадки прокаливают и взвешивают. На основании полученных результатов вычисляется величина кальциевой и магниевой жесткости.

Наиболее быстрым и точным методом определения Са 2 + и Mg 2 + является комплексонометрический метод, основанный на способности двунатриевой соли этилендиаминотетрауксусной кислоты (трилон Б)

NaOOCCH 2 CH 2 COONa

N––CH 2 ––CH 2 ––N

HOOCCH 2 CH 2 COOH

образовывать с ионами кальция и магния прочные комплексные соединения.

При титровании пробы воды трилоном Б происходит последовательное связывание в комплекс сначала ионов кальция, а затем ионов магния. Содержание ионов кальция определяют, титруя воду в присутствии индикатора - мурексида. Мурексид образует с ионами кальция малодиссоциированное комплексное соединение, окрашенное в малиновый цвет.



Ионы магния не дают комплекса с мурексидом. Трилон Б извлекает Са 2+ из его растворимого комплекса с мурексидом, вследствие чего окраска раствора, изменяется на сиреневую:



По количеству трилона Б, расходуемого на титрование, определяют содержание Са 2 + . Титрованием пробы воды трилоном Б в присутствии индикатора хромогена черного определяют суммарное содержание Са 2 + и Mg 2 + , то есть общую жесткость воды. Вода, содержащая Са 2 + и Mg 2 + , в присутствии хромогена черного окрашивается в красный цвет вследствие образования комплекса с Mg 2 + . При титровании воды в точке эквивалентности происходит изменение цвета на синий вследствие протекания следующей реакции:



Содержание Mg 2+ вычисляют по разности между общим содержанием (Са 2+ + Mg 2+ ) и содержанием Са 2 + . Трилонометрическое определение каждого иона производится при том значении рН, при котором этот ион образует с трилоном Б соединение более прочное, чем с индикатором. Для поддержания заданного значения рН к титруемому раствору добавляют буферные растворы. Кроме того, поддержание заданной величины рН обеспечивает определенную окраску индикатора. Общую жесткость воды определяют при рН > 9, кальциевую – при рН = 12.

Определение ионов Na + , K + . Производится вычислением по разности между суммой мг-экв найденных анионов и катионов, поскольку вода электронейтральна:

rNa + + rK + + rCa 2+ + rMg 2+ = rCO 3 2- + rHCO 3 + rSO 4 2 + rCl

rNa + + rK + = rCO 3 2– + rHCO 3 + rSO 4 2 + rCl – rCa 2+ – rMg 2+

С достаточно высокой точностью все присутствующие в воде катионы можно определить эмиссионной спектроскопией сухого остатка.

Растворенные в воде газы определяют химическими методами или газовой хроматографией.

Определение диоксида углерода производят титрованием пробы воды щелочью в присутствии индикатора–фенолфталеина:

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O

Определение растворенного кислорода производится йодометрическим методом.

Для анализа в пробу воды поcледовательно добавляют раствор хлорида марганца и щелочной раствор йодида калия. Метод основан на окислении свежеполученного гидроксида двухвалентного марганца содержащимся в воде кислородом:

MnCl 2 + 2NaOH = Mn(OH) 2 + 2NaCl

2Mn(OH) 2 + O 2 = 2MnO(OH) 2

Количество образовавшегося в воде бурого осадка гидроксида четырехвалентного марганца эквивалентно количеству растворенного кислорода. При последующем добавлении к пробе соляной или серной кислоты четырехвалентный марганец вновь восстанавливается до двухвалентного, окисляя при этом йодид калия. Это приводит к выделению свободного йода, эквивалентного содержанию четырехвалентного марганца, или, что то же самое, растворенного кислорода в пробе:

MnO(OH) 2 + 2KI + 4HCl→MnCl 2 + 2KCl + 3H 2 O + I 2

Выделившийся свободный йод определяется количественно путем титрования раствором тиосульфата натрия:

I 2 + 2Na 2 S 2 O 3
2NaI + Na 2 S 4 O 6

Йодометрический метод определения растворенного кислорода неприменим для вод, содержащих сероводород, так как сероводород вступает во взаимодействие с йодом и занижает результат. Во избежание этой ошибки предварительно связывают содержащийся в пробе сероводород в соединение, не препятствующее нормальному течению реакции. Для этой цели обычно используют хлорид ртути (II):

H 2 S + HgCl 2 = HgS↓ + 2HCl

Определение H 2 S . Прежде чем приступить к количественному определению сероводорода, определяют его качественное присутствие по характерному запаху. Более объективным качественным показателем служат свинцовые индикаторные бумажки (фильтровальная бумага, пропитанная раствором ацетата свинца). При опускании в воду, содержащую сероводород, свинцовая бумага темнеет, принимая желтую (малое содержание), бурую (среднее содержание) или темно-коричневую (высокое содержание) окраску.

В водных растворах сероводород присутствует в трех формах: недиссоциированный H 2 S , в виде ионов HS и S 2 – . Относительные концентрации этих форм в воде зависят от рН этой воды и в меньшей степени от температуры и общего солесодержания.

Если анализируемая вода не содержит веществ, реагирующих с иодом, то сероводород и его ионы можно определить следующим образом.

В основе количественного метода определения H 2 S лежит реакция окисления сероводорода йодом:

H 2 S + I 2 = 2HI + S↓

К точно отмеренному подкисленному раствору йода, взятого в избытке по отношению к ожидаемому содержанию сероводорода, прибавляют определенное количество воды. Количество йода, израсходованное на окисление сероводорода, определяется обратным титрованием остатка йода тиосульфатом. Разница между количеством раствора тиосульфата, соответствующим всему количеству взятого для анализа йода, и количеством этого же раствора, затраченного на титрование остатка йода в пробе, эквивалентна содержанию сероводорода в исследуемой пробе.

    Приложение А (обязательное). Подготовка катионита (перевод в Подготовка катионита (перевод в Н+ - форму) и активированного угля) и активированного угля

Количественный химический анализ вод. Методика выполнения измерений массовых концентраций сульфатов в пробах природных и очищенных сточных вод титрованием солью бария в присутствии ортанилового К
ПНД Ф 14.1:2.107-97
(утв. Госкомэкологии РФ 21 марта 1997 г.)

1. Введение

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них массовой концентрации сульфатов в диапазоне от 50 до 300 титриметрическим методом без разбавления и концентрирования пробы.

Если массовая концентрация сульфатов в анализируемой пробе превышает верхнюю границу, допускается разбавление пробы дистиллированной водой таким образом, чтобы концентрация сульфатов соответствовала регламентированному диапазону.

Если массовая концентрация сульфатов в анализируемой пробе меньше 50 , следует применять другой метод определения.

Определению мешают окрашенные и взвешенные вещества, а также катионы, способные реагировать с ортаниловым К.

Устранение мешающих влияний осуществляется в соответствии с п. 10 .

2. Принцип метода

Титриметрический метод определения массовой концентрации сульфатов основан на способности сульфатов образовывать с ионами бария слаборастворимый осадок . В точке эквивалентности избыток ионов бария реагирует с индикатором ортаниловым К с образованием комплексного соединения. При этом окраска раствора изменяется из сине-фиолетовой в зеленовато-голубую.

3. Приписанные характеристики погрешности измерений и ее составляющих

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1 .

Значения показателя точности методики используют при:

Оформлении результатов анализа, выдаваемых лабораторией;

Оценке деятельности лабораторий на качество проведения испытаний;

Оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Таблица 1

Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости

Диапазон измерений массовой концентрации сульфатов,

Показатель точности (границы относительной погрешности при вероятности Р = 0.95),

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости),

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости),

от 50.0 до 300.0 вкл.

4. Средства измерений, вспомогательные устройства, реактивы и материалы

4.1. Средства измерений

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 0,1 мг любого типа

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 10 мг любого типа

СО с аттестованным содержанием сульфатов с погрешностью не более 1% при Р = 0.95

Колбы мерные, наливные

Пипетки градуированные

Пипетки с одной меткой

Цилиндры мерные или мензурки

4.2. Вспомогательные устройства

Плитка электрическая с закрытой спиралью и регулируемой мощностью нагрева

Шкаф сушильный лабораторный с температурой нагрева до 130°С

Стаканчики для взвешивания (бюксы)

Стаканы химические

Колбы конические

Колба с тубусом 1-500

Воронки лабораторные В-75-110 ХС

Воронка Бюхнера 1

или воронка фильтрующая с пористой пластинкой ВФ-1-32(40)-ПОР 100(160) ТХС

Эксикатор

Колонка хроматографическая диаметром 1,5-2,0 см и длиной 25-30 см

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

ТУ-3616-001-32953279-97

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерения и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п.п. 4.1 и 4.2 .

4.3. Реактивы и материалы

Хлорид бария

Сульфат калия

Ортаниловый К, тринатриевая соль

ТУ 6-09-05-587

Соляная кислота

Гидроксид натрия

Спирт этиловый или

Катионит сильнокислотный КУ-2

Уголь активированный

Бумага индикаторная универсальная

Фильтры мембранные Владипор типа МФАС-МА или МФАС-ОС-2 (0,45 мкм)

ТУ 6-55-221-1029-89

или фильтры бумажные обеззоленные "синяя лента"

Фильтры бумажные обеззоленные "белая лента"

Вода дистиллированная

Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

5. Требования безопасности

5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007 .

6. Требования к квалификации операторов

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического метода анализа.

7. Условия измерений

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

температура окружающего воздуха

атмосферное давление

(84-106) кПа;

относительная влажность

не более 80% при температуре 25°С;

частота переменного тока

напряжение в сети

8. Отбор и хранение проб

8.1. Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 "Вода. Общие требования к отбору проб".

8.2. Посуду, предназначенную для отбора и хранения проб, промывают раствором соляной кислоты, а затем дистиллированной водой.

8.3. Пробы воды отбирают в стеклянные или полиэтиленовые емкости. Объем отбираемой пробы должен быть не менее 200 .

8.4. Пробы хранят при температуре 3-4°С. Рекомендуется выполнять определение в течение 7 дней после отбора.

Если в воде присутствуют заметные количества других соединений минеральной или органической серы, определение необходимо выполнить не позднее 1 суток после отбора проб.

8.5. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

Цель анализа, предполагаемые загрязнители;

Место, время отбора;

Номер пробы;

Должность, фамилия отбирающего пробу, дата.

9. Подготовка к выполнению измерений

9.1. Приготовление растворов и реактивов

9.1.1. Раствор хлорида бария, 0,02 эквивалента.

1,22 г растворяют в 450 дистиллированной воды в мерной колбе вместимостью 500 , доводят до метки дистиллированной водой и перемешивают. Раствор хранят в плотно закрытой склянке не более 6 мес.

Точную концентрацию раствора определяют титрованием стандартного раствора сульфата калия (п. 9.2) не реже 1 раза в месяц.

9.1.2. Стандартный раствор сульфата калия с концентрацией 0,0200 эквивалента.

0,4357 г , предварительно высушенного в течение 2 ч при 105-110°С, переносят в мерную колбу вместимостью 250 , доводят дистиллированной водой до метки и перемешивают. Хранят в плотно закрытой стеклянной или полиэтиленовой посуде не более 6 мес.

9.1.3. Раствор ортанилового К, 0,05%.

25 мг ортанилового К растворяют в 50 дистиллированной воды. Хранят в склянке из темного стекла не более 10 суток при комнатной температуре и не более 1 месяца в холодильнике.

9.1.4. Раствор соляной кислоты, 4 .

170 концентрированной соляной кислоты смешивают с 330 дистиллированной воды.

9.1.5. Раствор соляной кислоты, 1 .

К 250 раствора соляной кислоты 4 приливают 750 дистиллированной воды и перемешивают.

Растворы соляной кислоты устойчивы при хранении в плотно закрытой посуде в течение 1 года.

9.1.6. Раствор гидроксида натрия, 1 .

40 г NaOH растворяют в 1 дистиллированной воды. Хранят в плотно закрытой полиэтиленовой посуде.

9.1.7. Раствор гидроксида натрия, 0,4%.

2 г гидроксида натрия растворяют в 500 дистиллированной воды. Хранят в плотно закрытой полиэтиленовой посуде.

Растворы гидроксида натрия устойчивы при хранении в плотно закрытой полиэтиленовой посуде в течение 2 мес.

9.2. Установление точной концентрации раствора хлорида бария

В коническую колбу вместимостью 100 вносят 4 см стандартного раствора сульфата калия (п. 9.1.2), добавляют 6 воды и доводят рН раствора до 4 раствором соляной кислоты. Добавляют 15 этилового спирта или ацетона, 0,3 раствора ортанилового К и титруют раствором хлорида бария при постоянном перемешивании до перехода окраски из сине-фиолетовой в зеленовато-голубую. Титрование проводят медленно, особенно вблизи точки эквивалентности, и продолжают до тех пор, пока фиолетовая окраска не будет возвращаться в течение 2-3 мин.

Повторяют титрование и при отсутствии расхождения в объемах титранта более 0,02 за результат титрования принимают среднее арифметическое.

Точную концентрацию раствора хлорида бария находят по формуле:

где - концентрация раствора хлорида бария, эквивалента;

Концентрация раствора сульфата калия, эквивалента;

Объем раствора сульфата калия, ;

Объем раствора хлорида бария, израсходованный на титрование раствора сульфата калия, .

10. Устранение мешающих влияний

Мешающее влияние взвешенных и коллоидных веществ устраняют предварительным фильтрованием пробы.

Если проба воды заметно окрашена за счёт присутствия веществ природного или антропогенного происхождения, затрудняется фиксация конечной точки титрования. В этом случае пробу перед выполнением анализа следует пропустить со скоростью 4-6 через хроматографическую колонку, заполненную активированным углем (высота слоя 12-15 см). Первые 25-30 пробы, прошедшей через колонку, отбрасывают.

Если в пробе присутствует активный хлор, его удаляют нагреванием пробы. Для этого в мерную колбу вместимостью 100 помещают анализируемую воду до метки, затем переносят пробу из колбы в стакан вместимостью 250 и кипятят 10-15 мин. После охлаждения пробу возвращают в мерную колбу, стакан ополаскивают 1-2 дистиллированной воды и доводят объем пробы в колбе до метки.

Мешающее влияние катионов устраняют обработкой пробы катионитом.

11. Выполнение измерений

Непосредственно перед выполнением анализа отфильтровывают на воронке через неплотный бумажный фильтр 5-10 г катионита в , помещают его в коническую колбу вместимостью 250 и споласкивают 20-25 анализируемой воды.

Вносят в колбу с катионитом 50-70 анализируемой воды и выдерживают пробу в течение 10 мин, периодически встряхивая колбу. Затем дают катиониту осесть и отбирают пипеткой 10 воды в коническую колбу вместимостью 100 . Проверяют рН и, если необходимо, доводят его величину раствором гидроксида натрия 1 примерно до 4 по индикаторной бумаге. Добавляют 15 этилового спирта или ацетона, 0,3 раствора ортанилового К и титруют раствором хлорида бария при постоянном перемешивании содержимого колбы до перехода окраски из сине-фиолетовой в зеленовато-голубую.

В начальной стадии титрования, особенно в пробах с невысоким содержанием сульфатов, окраска изменяется уже после первых капель хлорида бария. Вследствие этого титрование следует проводить медленно, при энергичном перемешивании, продолжая его до тех пор, пока сине-фиолетовая окраска не будет возвращаться в течение 2-3 мин.

Повторяют титрование и, если расхождение между параллельными титрованиями не превышает 0,04 , за результат принимают среднее значение объёма раствора хлорида бария. В противном случае повторяют титрование до получения допустимого расхождения результатов.

12. Обработка результатов измерений

12.1. Массовую концентрацию сульфатов в анализируемой пробе воды находят по формуле:

где Х - массовая концентрация сульфатов в воде, ;

V - объем раствора хлорида бария, израсходованного на титрование пробы, ;

Концентрация раствора хлорида бария, эквивалента;

Поправка, равная 5,0 в диапазоне массовых концентраций сульфатов 50-100 ; при концентрациях выше 100

Объем пробы воды, взятый для титрования после катионирования, .

48,03 - молярная масса эквивалента , г/моль.

Если массовая концентрация сульфатов в анализируемой пробе превышает верхнюю границу диапазона (300 ), отбирают аликвоту катионированной пробы, разбавляют ее дистиллированной водой с таким расчетом, чтобы массовая концентрация сульфатов входила в регламентированный диапазон, отбирают 10 и выполняют титрование в соответствии с п. 11 .

В этом случае массовую концентрацию сульфатов в анализируемой пробе воды Х находят по формуле:

где - массовая концентрация сульфатов в разбавленной пробе воды, ;

v - объем аликвоты пробы воды, взятой для разбавления, ;

Объем пробы воды после разбавления, .

12.2. За результат анализа принимают среднее арифметическое значение двух параллельных определений и :

для которых выполняется следующее условие:

где r - предел повторяемости при Р = 0.95.

Значение r при Р = 0.95 для всего регламентированного диапазона массовых концентраций сульфатов составляет 14%.

Если проводилось разбавление пробы воды из-за превышения массовой концентрации сульфатов верхней границы диапазона, значение выбирают из таблицы 1 для массовой концентрации сульфатов в разбавленной пробе воды .

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде:

при условии ,

где - результат анализа, полученный в соответствии с прописью методики;

Значение характеристики погрешности результатов анализа, установленное при реализации методики в лаборатории, и обеспечиваемое контролем стабильности результатов анализа.

Численные значения результата измерения должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности.

Примечание. При представлении результата анализа в документах, выдаваемых лабораторией, указывают:

Количество результатов параллельных определений, использованных для расчета результата анализа;

Способ определения результата анализа (среднее арифметическое значение или медиана результатов параллельных определений).

14. Контроль качества результатов анализа при реализации методики в лаборатории

Контроль качества результатов анализа при реализации методики в лаборатории предусматривает:

Оперативный контроль процедуры анализа (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);

Контроль стабильности результатов анализа (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

14.1. Алгоритм оперативного контроля процедуры анализа с использованием метода добавок

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры с нормативом контроля К.

Результат контрольной процедуры рассчитывают по формуле:

где - результат анализа массовой концентрации сульфатов в пробе с известной добавкой - среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 12.2 ;

Результат анализа массовой концентрации сульфатов в исходной пробе - среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 12.2 ;

Величина добавки.

где , - значения характеристики погрешности результатов анализа, установленные в лаборатории при реализации методики, соответствующие массовой концентрации сульфатов в пробе с известной добавкой и в исходной пробе соответственно.

С - аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле:

где - характеристика погрешности результатов анализа, соответствующая аттестованному значению образца для контроля.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: , с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ


МОСКВА 1997 г.

(издание 2004 г.)

1. ВВЕДЕНИЕ

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них массовой концентрации кальция в диапазоне от 1,0 до 100 мг/дм 3 титриметрическим методом без разбавления и концентрирования пробы.

Если массовая концентрация кальция в анализируемой пробе превышает верхнюю границу, допускается разбавление пробы дистиллированной водой таким образом, чтобы концентрация кальция соответствовала регламентированному диапазону.


Определению мешают мутность, цветность, а также ионы металлов: алюминия (> 10 мг/дм 3), железа (> 10 мг/дм 3), меди (> 0,05 мг/дм 3), кобальта и никеля (> 0,1 мг/дм 3), вызывая нечеткое изменение окраски в точке эквивалентности. Другие катионы (свинец, кадмий, марганец (ІІ), цинк, стронций, барий) могут частично титроваться вместе с кальцием и повышать расход трилона Б.

Магний в условиях анализа осаждается в виде гидроксида и не мешает определению.

Устранение мешающих влияний осуществляется в соответствии с п. 10.

2. ПРИНЦИП МЕТОДА

Титриметрический метод определения массовой концентрации кальция основан на его способности образовывать с трилоном Б малодиссоциированное, устойчивое в щелочной среде соединение. Конечная точка титрования определяется по изменению окраски индикатора (мурексида) из розовой в красно-фиолетовую. Для увеличения четкости перехода окраски предпочтительнее использовать смешанный индикатор (мурексид + нафтоловый зелёный Б). При этом в конечной точке титрования окраска изменяется от грязно-зеленой до синей.

3. ПРИПИСАННЫЕ ХАРАКТЕРИСТИКИ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ И ЕЕ СОСТАВЛЯЮЩИХ

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.


Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости, правильности

4. СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА, РЕАКТИВЫ И МАТЕРИАЛЫ

4.1. Средства измерений

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 0,1 мг любого типа

ГОСТ 24104-2001

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 10 мг любого типа

ГОСТ 24104-2001

СО с аттестованным содержанием кальция с погрешностью не более 1 % при Р = 0,95

Колбы мерные, наливные

Пипетки градуированные

Пипетки с одной меткой

Цилиндры мерные или мензурки

4.2. Вспомогательные устройства

Плитки электрические с закрытой спиралью и регулируемой мощностью нагрева

Шкаф сушильный лабораторный с температурой нагрева до 130 °С

Стаканчики для взвешивания (бюксы)

Стаканы химические

В-1-1000 ТХС

Колбы конические или плоскодонные

Кн-2-250-34 ТХС

Кн-2-500-40 ТС

Ступка фарфоровая с пестиком № 2 (3)

Колонка хроматографическая диаметром 1,5 - 2,0 см

и длиной 25 - 30 см

Стекло часовое диаметром 5 - 7 см

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

ТУ-3616-001-32953279-97

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п.п. 4.1 и 4.2.


4.3. Реактивы и материалы

Динатриевая соль этилендиамин-N, N, N", N-тетрауксусной кислоты, дигидрат (трилон Б, комплексон III)

Цинк гранулированный

Хлорид аммония

Аммиак водный, концентрированный

Хлорид натрия

Гидроксид натрия

Сульфид натрия

или диэтилдитиокарбамат натрия

Соляная кислота

Гидроксиламина гидрохлорид

Мурексид (пурпурат аммония)

Нафтоловый зеленый Б

ТУ 6-09-3542-84

Эриохром черный Т (хромоген черный)

ТУ 6-09-1760-87

Уголь активированный

Бумага индикаторная универсальная

Фильтры мембранные Владипор типа МФАС-МА

ТУ 6-55-221-1029-89

или МФАС-ОС-2 (0,45 мкм)

или фильтры бумажные обеззоленные

«синяя лента»

Вода дистиллированная

Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

5.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ 12.1.019.

5.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004.

5.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

6. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВ

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического метода анализа.

8. ОТБОР И ХРАНЕНИЕ ПРОБ

8.1. Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

8.2. Посуду, предназначенную для отбора и хранения проб, промывают раствором соляной кислоты 1:1, а затем дистиллированной водой.

8.3. Пробы воды отбирают в стеклянные бутыли. При фильтровании через любой фильтр первые порции фильтрата отбрасывают.

Объем отбираемой пробы должен быть не менее 300 см 3 .

8.4. Пробы не консервируют, хранят при комнатной температуре не более 6 месяцев.

Если в период хранения в пробе выпал осадок карбоната кальция, непосредственно перед анализом его растворяют прибавлением 0,5 - 1 см 3 концентрированной соляной кислоты, предварительно перелив с помощью сифона прозрачный слой над осадком в чистую сухую склянку. Затем перелитый раствор и жидкость с растворенным осадком соединяют вместе и нейтрализуют 20 % раствором гидроксида натрия, добавляя его по каплям и контролируя рН по индикаторной бумаге.

8.5. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

Цель анализа, предполагаемые загрязнители;

Место, время отбора;

Номер пробы;

Должность, фамилия отбирающего пробу, дата.

9. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

9.1. Приготовление растворов и реактивов

9.1.1. Раствор трилона Б с концентрацией 0,02 моль/дм 3 эквивалента.

3,72 г трилона Б растворяют в 1 дм 3 дистиллированной воды. Точную концентрацию раствора устанавливают по стандартному раствору хлорида цинка, как описано в п. 9.2.

Раствор хранят в полиэтиленовой посуде не более 6 месяцев, проверяют его концентрацию не реже 1 раза в месяц.

9.1.2. Раствор хлорида цинка с концентрацией 0,02 моль/дм 3 эквивалента.

0,35 г металлического цинка смачивают небольшим количеством концентрированной соляной кислоты и сейчас же промывают дистиллированной водой. Цинк сушат в сушильном шкафу при 105 °С в течение 1 ч, затем охлаждают и взвешивают на лабораторных весах с точностью до 0,1 мг.

Навеску цинка помещают в мерную колбу вместимостью 500 см 3 , в которую предварительно вносят 10 - 15 см 3 дистиллированной воды и 1,5 см 3 концентрированной соляной кислоты. Цинк растворяют, после чего объем раствора доводят до метки на колбе дистиллированной водой.

Рассчитывают молярную концентрацию эквивалента раствора хлорида цинка C zn (1/2 ZnCl 2), моль /дм 3 , по формуле:

где а - навеска металлического цинка, г;

32,69 - молярная масса эквивалента Zn 2+ , г/моль;

V - объём мерной колбы, см 3 .

Раствор хлорида цинка хранят в плотно закрытой стеклянной или полиэтиленовой посуде не более 2 месяцев.

9.1.3. Буферный раствор NH 4 Cl + NH 4 OH.

7,0 г хлорида аммония растворяют в мерной колбе вместимостью 500 см 3 в 100 см 3 дистиллированной воды и добавляют 75 см 3 концентрированного раствора аммиака. Объем раствора доводят до метки на колбе дистиллированной водой и тщательно перемешивают.

Буферный раствор хранят в стеклянной или полиэтиленовой посуде не более 2 месяцев.

9.1.4. Индикатор эриохром черный Т.

0,5 г эриохрома черного Т тщательно растирают в ступке с 50 г хлорида натрия. Используют при определении точной концентрации раствора трилона Б.

9.1.5. Индикатор мурексид.

0,2 г мурексида и 0,5 г нафтолового зеленого Б (или 0,2 г только мурексида) тщательно растирают в ступке со 100 г хлорида натрия.

Индикаторы устойчивы в течение 1 года при хранении в темной склянке.

9.1.6. Раствор гидроксида натрия, 20 %.

20 г NaOH растворяют в 80 см 3 дистиллированной воды.

9.1.7. Раствор гидроксида натрия, 8 %.

40 г NaOH растворяют в 460 см 3 дистиллированной воды.

9.1.8. Раствор гидроксида натрия, 0,4 %.

2 г NaOH растворяют в 500 см 3 дистиллированной воды. Растворы гидроксида натрия устойчивы при хранении в плотно закрытой полиэтиленовой посуде в течение 2 месяцев.

9.1.9. Раствор сульфида натрия.

2 г сульфида натрия растворяют в 50 см 3 дистиллированной воды. Хранят в плотно закрытой полиэтиленовой посуде не более 7 дней.

9.1.10. Раствор диэтилдитокарбамата натрия.

5 г диэтилдитиокарбамата натрия растворяют в 50 см 3 дистиллированной воды. Хранят не более 14 дней.

9.1.11. Раствор гидрохлорида гидроксиламина.

5 г гидрохлорида гидроксиламина растворяют в 100 см 3 дистиллированной воды. Хранят не более 2 месяцев.

9.1.12. Раствор соляной кислоты, 1:3.

200 см 3 концентрированной соляной кислоты смешивают с 600 см 3 дистиллированной воды. Хранят в плотно закрытой посуде не более 1 года.

9.1.13. Активированный уголь.

Подготовку активированного угля осуществляют в соответствии с Приложением А.

9.2. Установление точной концентрации раствора трилона Б

В коническую колбу вместимостью 250 см 3 вносят 10 см 3 раствора хлорида цинка (п. 9.1.2), добавляют дистиллированной воды приблизительно до 100 см 3 , 5 см 3 буферного раствора и 10 - 15 мг индикатора эриохрома черного Т. Содержимое конической колбы тщательно перемешивают и титруют из бюретки раствором трилона Б до перехода окраски из красной в голубую.

Титрование повторяют 2 - 3 раза и при отсутствии расхождения в объемах раствора трилона Б более 0,05 см 3 за результат принимают среднюю величину.

Концентрацию раствора трилона Б рассчитывают по формуле:

где С тр - концентрация раствора трилона Б, моль/дм 3 эквивалента;

C zn - концентрация раствора хлорида цинка, моль/дм 3 эквивалента;

V тр - объем раствора трилона Б, пошедшего на титрование, см 3 ;

V Zn - объем раствора хлорида цинка, см 3 .

10. УСТРАНЕНИЕ МЕШАЮЩИХ ВЛИЯНИЙ

Для устранения мешающего влияния катионов металлов к пробе перед титрованием прибавляют маскирующие реагенты: 0,5 см 3 раствора сульфида или диэтилдитиокарбамата натрия и 0,5 см 3 раствора гидрохлорида гидроксиламина.

Результаты определения могут также быть искажены в присутствии значительных количеств анионов (НСО 3 - , СО 3 2- , PО 4 3- , SiО 3 2-). Для уменьшения их влияния пробу следует титровать сразу после добавления щёлочи.

Мешающее влияние взвешенных и коллоидных веществ устраняют фильтрованием пробы.

Если проба воды заметно окрашена за счёт присутствия веществ природного или антропогенного происхождения, затрудняется фиксация конечной точки титрования. В этом случае пробу перед выполнением анализа следует пропустить со скоростью 4 - 6 см 3 /мин через хроматографическую колонку, заполненную активированным углем (высота слоя 12 - 15 см). Первые 25 - 30 см 3 пробы, прошедшей через колонку, отбрасывают.

Как правило, окрашенные соединения антропогенного происхождения сорбируются активированным углем практически полностью, в то время как природного (гумусовые вещества) - лишь частично. При высокой и не устраняемой цветности пробы, обусловленной гумусовыми веществами, определение конечной точки титрования значительно облегчается использованием для сравнения перетитрованной пробы этой же воды (пробы-свидетеля).

11. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

11.1. Выбор условий титрования

Объём пробы воды для определения кальция выбирают исходя из известной величины общей жёсткости или по результатам оценочного титрования.

Если величина жёсткости составляет менее 4 ммоль/дм 3 , то для анализа берут 100 см 3 , 4 - 8 ммоль/дм 3 - 50 см 3 и более 8 ммоль/дм 3 - 25 см 3 пробы воды.

Для оценочного титрования берут 10 см 3 воды, добавляют 0,2 см 3 8 % раствора гидроксида натрия, 10 - 15 мг индикатора мурексида и титруют раствором трилона Б до перехода окраски со смешанным индикатором из грязно-зелёной в синюю, а при использовании только мурексида - из розовой в красно-фиолетовую. По величине израсходованного на титрование объема раствора трилона Б выбирают из таблицы 2 соответствующий объем пробы воды.

В зависимости от содержания кальция титрование проводят из микробюретки или из бюретки. Если по результатам оценочного титрования объем трилона Б меньше 0,2 см 3 или жесткость меньше 0,4 ммоль/дм 3 эквивалента, используют микробюретку, в противном случае - бюретку.

11.2. Титрование

В коническую колбу отмеривают пипеткой требуемый объем пробы, доводят, если необходимо, до 100 см 3 дистиллированной водой, добавляют 2 см 3 8 % раствора гидроксида натрия, 0,1 - 0,2 г индикатора мурексида и титруют раствором трилона Б до перехода окраски со смешанным индикатором из грязно-зелёной в синюю, а при использовании только мурексида - из розовой в красно-фиолетовую.

Повторяют, титрование и, если расхождение между параллельными титрованиями не превышает значений, приведенных в таблице 3, за результат принимают среднее значение объёма трилона Б. В противном случае повторяют титрование до получения допустимого расхождения результатов.

Таблица 3

Допустимые расхождения между параллельными титрованиями в зависимости от объема раствора трилона Б

12. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

12.1. Массовую концентрацию кальция в анализируемой пробе воды находят по формулам:

или

где X или Х э - массовая концентрация кальция в воде, мг/дм 3 или ммоль/дм 3 соответственно;

С тр - концентрация раствора трилона Б, моль/дм 3 эквивалента;

V тр - объем раствора трилона Б, израсходованного на титрование пробы, см 3 ;

V - объем пробы воды, взятой для определения, см 3 ;

20,04 - молярная масса эквивалента Ca 2+ , г/моль.

Если массовая концентрация кальция в анализируемой пробе превышает верхнюю границу диапазона (100 мг/дм 3), разбавляют пробу с таким расчетом, чтобы массовая концентрация кальция входила в регламентированный диапазон, и выполняют титрование в соответствии с п. 11.2.

В этом случае массовую концентрацию кальция в анализируемой пробе воды X или Х э находят по формуле:

где Х v - массовая концентрация кальция в разбавленной пробе воды, мг/дм 3 или ммоль/дм 3 соответственно;

v - объем аликвоты пробы воды, взятой для разбавления, см 3 ;

V v - объем пробы воды после разбавления, см 3 .

12.2. За результат анализа Х ср принимают среднее арифметическое значение двух параллельных определений Х 1 и Х 2:

для которых выполняется следующее условие:

где r - предел повторяемости, значения которого приведены в таблице 4.

При невыполнении условия (1) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6.

Таблица 4

Значения предела повторяемости при вероятности Р = 0,95

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 5.

Таблица 5

Значения предела воспроизводимости при вероятности Р = 0,95

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

13. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ АНАЛИЗА

Результат анализа Х ср в документах, предусматривающих его использование, может быть представлен в виде:

Х ср ± ?, Р = 0,95,

где? - показатель точности методики.

Значение? рассчитывают по формуле:

Значение? приведено в таблице 1.

Если проводилось разбавление пробы воды из-за превышения массовой концентрации кальция верхней границы диапазона, значение? выбирают из таблицы 1 для массовой концентрации кальция в разбавленной пробе воды X v .

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде:

Х ср ± ? л, Р = 0,95,

при условии? л < ?,

где Х ср - результат анализа, полученный в соответствии с прописью методики;

± ? л - значение характеристики погрешности результатов анализа, установленное при реализации методики в лаборатории, и обеспечиваемое контролем стабильности результатов анализа.

Численные значения результата измерения должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности.

Примечание. При представлении результата анализа в документах, выдаваемых лабораторией, указывают:

Количество результатов параллельных определений, использованных для расчета результата анализа;

Способ определения результата анализа (среднее арифметическое значение или медиана результатов параллельных определений).

14. КОНТРОЛЬ КАЧЕСТВА РЕЗУЛЬТАТОВ АНАЛИЗА ПРИ РЕАЛИЗАЦИИ МЕТОДИКИ В ЛАБОРАТОРИИ

Контроль качества результатов анализа при реализации методики в лаборатории предусматривает:

Оперативный контроль процедуры анализа (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);

Контроль стабильности результатов анализа (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

14.1. Алгоритм оперативного контроля процедуры анализа с использованием метода добавок

К к с нормативом контроля К.

К к рассчитывают по формуле.

где Х" ср - результат анализа массовой концентрации кальция в пробе с известной добавкой - среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 12.2;

Х ср - результат анализа массовой концентрации кальция в исходной пробе - среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 12.2;

С д - величина добавки.

Норматив контроля К рассчитывают по формуле:

где - значения характеристики погрешности результатов анализа, установленные в лаборатории при реализации методики, соответствующие массовой концентрации кальция в пробе с известной добавкой и в исходной пробе соответственно.

Примечание.

При невыполнении условия (2) контрольную процедуру повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

14.2. Алгоритм оперативного контроля процедуры анализа с применением образцов для контроля

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры К к с нормативом контроля К.

Результат контрольной процедуры К к рассчитывают по формуле:

где C ср - результат анализа массовой концентрации кальция в образце для контроля - среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 12.2;

С - аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле:

где ± ? л - характеристика погрешности результатов анализа, соответствующая аттестованному значению образца для контроля.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: ? л = 0,84 · ?, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

При невыполнении условия (3) контрольную процедуру повторяют. При повторном невыполнении условия (3) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Периодичность оперативного контроля процедуры анализа, а также реализуемые процедуры контроля стабильности результатов анализа регламентируют в Руководстве по качеству лаборатории.

Приложение А

(обязательное)

Подготовка активированного угля

Порцию активированного угля, достаточную для заполнения колонки, помещают в коническую колбу, добавляют 100 - 150 см 3 раствора соляной кислоты 4 моль/дм 3 и кипятят 2 - 3 ч. Если раствор кислоты окрашивается, повторяют операцию до тех пор, пока он не останется бесцветным. Уголь отмывают дистиллированной водой до нейтральной реакции по универсальной индикаторной бумаге, добавляют 100 - 150 см 3 раствора гидроксида натрия 1 моль/дм 3 и выдерживают 8 - 10 ч. Если появляется окраска, операцию повторяют.

Очищенный уголь отмывают дистиллированной водой до нейтральной реакции. Хранят в склянке с дистиллированной водой до 6 месяцев.

Для заполнения колонки склянку встряхивают и переносят уголь вместе с водой в колонку, избыток воды сливают через кран. Высота слоя угля должна быть 12 - 15 см. Перед пропусканием пробы воду из колонки удаляют.

После пропускания каждой пробы воды уголь в колонке регенерируют промыванием 0,4 % раствором гидроксида натрия до исчезновения окраски последнего, затем дистиллированной водой до нейтральной реакции.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Государственный научный метрологический центр

ФГУП «Уральский научно-исследовательский институт метрологии»

СВИДЕТЕЛЬСТВО

об аттестации методики выполнения измерений

№ 223.1.01.02.92/2008

Методика выполнения измерений массовой концентрации кальция в пробах

наименование измеряемой величины; объекта

природных и очищенных сточных вод титриметрическим методом, __________________

и метода измерений

разработанная ООО НПП «Акватест» (г. Ростов-на-Дону), _________________________

наименование организации (предприятия), разработавшей МВИ

аттестована в соответствии с ГОСТ Р 8.563. ______________________________________

Аттестация осуществлена по результатам метрологической экспертизы материалов _

вид работ: метрологическая экспертиза материалов по разработке МВИ,

по разработке методики выполнения измерений __________________________________

теоретическое или экспериментальное исследование МВИ, другие виды работ

В результате аттестации установлено, что МВИ соответствует предъявляемым к ней метрологическим требованиям и обладает следующими основными метрологическими характеристиками, приведенными в приложении.

Приложение: метрологические характеристики МВИ на 1 листе

Приложение к свидетельству № 223.1.01.02.92/2008 об аттестации методики выполнения измерений массовой концентрации кальция в пробах природных и очищенных сточных вод титриметрическим методом

1 Диапазон измерений, значения показателей точности, воспроизводимости, правильности и повторяемости

* соответствует относительной расширенной неопределенности при коэффициенте охвата k =2

2 Диапазон измерений, значения предела воспроизводимости при вероятности Р = 0,95

3 При реализации методики в лаборатории обеспечивают:

Оперативный контроль процедуры измерений;

контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

Алгоритм оперативного контроля процедуры измерений приведен в документе на методику выполнения измерений.

Процедуры контроля стабильности результатов выполняемых измерений регламентируют в Руководстве по качеству лаборатории.

МИНИСТЕРСТВО ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ
И ПРИРОДНЫХ РЕСУРСОВ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
МАССОВОЙ КОНЦЕНТРАЦИИ ИОНОВ НИКЕЛЯ
В ПРОБАХ ПИТЬЕВЫХ, ПРИРОДНЫХ И СТОЧНЫХ ВОД
МЕТОДОМ ИНВЕРСИОННОЙ ВОЛЬТАМПЕРОМЕТРИИ

ПНД Ф 14.1:2:4.73-96

Методика допущена для целей государственного экологического контроля.

Москва 1995 г.

Методика рассмотрена и одобрена Главным управлением аналитического контроля и метрологического обеспечения природоохранной деятельности (ГУАК) и Главным метрологом Минприроды РФ

Главный метролог Минприроды РФ

Начальник ГУАК Г.М. Цветков.

1. НАЗНАЧЕНИЕ.

Настоящий документ устанавливает методику количественного химического анализа проб природных, питьевых и сточных вод для определения в них ионов никеля при массовой концентрации никеля от 1 до 2500 мкг/дм 3 . При определении содержания ионов никеля (II) в пробах вод концентрация органического углерода в электролизере электрохимической ячейки не должна превышать 10 мг/дм 3 . Мешающее влияние органической составляющей вод при содержании органического углерода выше 10 мг/дм 3 устраняется обработкой пробы ультрафиолетовым облучением. Мешающее влияние 100-кратного избытка ионов меди (II), 50-кратного избытка ионов кадмия (II ) и 10-кратного избытка ионов Со (II) устраняют добавлением пиридина.

2. НОРМЫ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ.

Нормы погрешности измерений массовой концентрации ионов никеля регламентированы ГОСТ 27384-87 «Вода. Нормы погрешности измерений показателей состава и свойств».

3. ЗНАЧЕНИЯ ХАРАКТЕРИСТИКИ ПОГРЕШНОСТИ.

Методика количественного химического анализа обеспечивает с вероятностью Р = 0,95 получение результатов анализа массовых концентраций ионов никеля с погрешностью, не превышающей значений, приведенных в таблице .

Таблица 1

Значения характеристики погрешности измерений и ее составляющих.

4.3. Мешалка магнитная.

4.4. Весы лабораторные аналитические общего назначения с наибольшим пределом взвешивания 200 г, 2-го класса точности по ГОСТ 24104 .

4.5. Колбы мерные наливные стеклянные 2-го класса точности по ГОСТ 1770-74 исполнения 1 или 2 вместимостью 1000 см 3 , 100 см 3 , 50 см 3 и 25 см 3 с притертыми пробками; цилиндры вместимостью 50 см 3 и 25 см 3 .

4.6. Пипетки мерные лабораторные стеклянные 2-го класса точности по ГОСТ 20292-74, вместимостью 10 см 3 исполнения 2 или 3, вместимостью 5 см 3 исполнения 1, вместимостью 1 см 3 исполнения 4 или 5.

4.7. Дозаторы типа ПЛ-01-20, ПЛ-01-200, ПЛ-01-100 или другие с дискретностью установки доз 1,0 или 2,0 мкл.

4.8. Аппарат для приготовления бидистиллированной воды (стеклянный) типа АСД-4 по ГОСТ 15150-69 , ТУ 25-1173, 103-84

4.9. Установка для обработки проб ультрафиолетовым облучением типа 705 UV -Digester («Metrohm», Швейцария).

4.10. pH-метр-милливольтметр типа pH-150.

4.11. Установка для фильтрования под вакуумом с приспособлением для создания вакуума.

4.12. Резец керамический.

5. РЕАКТИВЫ И МАТЕРИАЛЫ.

5.1. Государственный стандартный образец (ГСО) состава водных растворов ионов никеля (II) с погрешностью не более 1 % отн. при Р = 0,95 с концентрацией 1 мг/см 3 .

7.2. Электробезопасность при работе с электроустановками по ГОСТ 12.1.019 .

7.3. Организация обучения работающих безопасности труда по ГОСТ 12.04.004.

7.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009 .

8. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВ.

Выполнение измерений может производить химик-аналитик, владеющий техникой вольтамперометрического анализа и изучивший инструкцию по эксплуатации анализатора инверсионного вольтамперометрического.

9. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ.

Измерения проводятся в нормальных лабораторных условиях.

Температура окружающего воздуха 20 ± 10 °С.

Атмосферное давление (97 ± 10) кПа.

Относительная влажность (65 ± 15) %.

Частота переменного тока (50 ± 5) Гц.

Напряжение в сети (220 ± 10) В.

10. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ.

10.1. Отбор и хранение проб воды.

10.1.1. Химическую посуду, применяемую в процессе анализа и для отбора проб, обезжиривают 10 % водным раствором едкого натрия в течение 10 - 12 часов, промывают бидистиллированной водой, затем промывают раствором 1 моль/дм 3 азотной кислоты и ополаскивают бидистиллированной водой. Затем посуду обрабатывают концентрированной серное кислотой, промывают тридистиллированной водой, заливают хлористоводородной кислотой квалификации ос.ч. разбавленной тридистиллированной водой в соотношении 1:100, выдерживают в течение 2 - 3-х часов, после чего вновь промывают тридистиллированной водой.

10.1.2. Пробы воды отбирают в полиэтиленовые бутыли, предварительно промытые отбираемой водой. Объем отбираемой пробы воды должен быть не менее 100 см 3 .

10.1.3. Отобранные природные воды фильтруют через плотный фильтр (синяя лента) и подкисляют хлористоводородной кислотой квалификации ос.ч. до рН ≈ 2 - 3, добавляя 1 см 3 концентрированной кислоты на объем пробы 1 дм 3 . Фильтрование природных вод, содержащих небольшое количество мелкодисперсных взвешенных веществ, возможно проводить с использованием мембранных фильтров со средним диаметром пор 0,5 мкм под небольшим вакуумом. Сточные воды фильтруют через плотный фильтр (синяя лента) и измеряют значение рН пробы. Затем с помощью хлористоводородной кислоты или гидроксида натрия устанавливают рН пробы 2 - 3. Пробы выдерживают не менее 3 - 4-х часов перед выполнением измерений. Пробы, законсервированные таким образом, хранят в холодильнике при 4 - 6 °С не более 2-х недель. Незаконсервированные пробы анализируют в день отбора.

10.1.4. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

Цель анализа, предполагаемые загрязнители;

Место, время отбора;

Номер пробы;

Должность, фамилия, отбирающего пробу, дата

10.2. Подготовка электрохимической ячейки к выполнению измерений.

Стеклянный стакан (электролизер) после проведения анализа обрабатывают концентрированной серной кислотой и промывают бидистиллированной водой. Электроды (индикаторный, вспомогательный, сравнения) промывают бидистиллированной водой. Затем электролизер и электроды (вспомогательный и сравнения) выдерживают в растворе хлористоводородной кислоты концентрации 0,1 моль/дм 3 в течение 1 - 2-х минут и вновь промывают бидистиллированной водой.

10.3. Приготовление растворов, необходимых для выполнения измерений.

10.3.1. Приготовление основных растворов (ОР) никеля (II) с массовой концентрацией ионов никеля (II) 0,1 мг/см 3 .

10.3.1.1. Приготовление основного раствора никеля (II) из государственного стандартного образца состава ионов никеля (II) с аттестованной концентрацией элемента 1 мг/см 3 .

В мерную колбу вместимостью 50 см 3 вводят 5 см 3 стандартного образца состава никеля (1Г) и доводят объем раствора до метки бидистиллированной водой.

10.3.1.2. Приготовление основного раствора никеля (II) в отсутствии ГСО:

На аналитических весах взвешивают в химическом стакане 0,4049 г хлористого никеля и растворяют в бидистиллированной воде, содержащей 20 см 3 концентрированной хлористоводородной кислоты. Раствор количественно переносят в мерную колбу вместимостью 1 дм 3 . Объем раствора доводят до метки на колбе бидистиллированной водой.

Основные растворы устойчивы в течение 6 месяцев.

10.3.2. Приготовление аттестованных растворов никеля (II). Аттестованные растворы (АР) с содержанием элемента по 10000, 1000 и 100 мкг/дм 3 готовят последовательным разбавлением в 10, 100 и 1000 раз основного раствора в мерных колбах вместимостью 25 см 3 в соответствии с табл. . Разбавление основных растворов никеля (II) проводят тридистиллированной водой.

Таблица 2.

На аналитических весах взвешивают 26,8 г хлористого аммония и переносят навеску в мерную колбу вместимостью 500 см 3 . Приливают 75 см 3 25 % раствора гидроксида аммония. Объем раствора доводят до метки на колбе тридистиллированной водой. Измеряют рН полученного раствора и доводят его кислотность до рН ≈ 9,8 ± 0,2.

10.4. Подготовка к работе и регенерация поверхности индикаторного электрода.

10.4.1. Подготовка поверхности индикаторного электрода.

Перед каждым погружением в раствор электрод:

Промывают тридистиллированной водой;

Осушают фильтровальной бумагой;

Тонкий слой рабочей поверхности электрода срезают резцом керамическим.

После регистрации каждой вольтамперограммы для регенерации поверхности электрод поляризуют катодными развертками потенциала (5 разверток) в интервале от (-0,75) В до 1,0 В.

10.5. Подготовка приборов к работе.

Подготовку к работе проводят в соответствии с инструкцией по эксплуатации и техническому описанию соответствующего прибора.

11. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ.

11.1. Пробы с низким (менее 50 мг/дм 3) содержанием органического углерода.

Проводят процесс предварительного концентрирования и регистрируют аналитический сигнал (АС) никеля для пробы (операцию повторяют 2 - 3 раза). Затем в электролизер с помощью дозатора или пипетки вносят добавку аттестованного раствора (АР) ионов никеля (II) в таком количестве, чтобы величина АС никеля увеличилась в 1,5 - 2 раза по сравнению с первоначальной. Объем добавки не должен превышать 0,25 см 3 . Регистрируют АС пробы с добавкой в тех же условиях, что и АС пробы (операцию повторяют 2 - 3 раза). Содержание Ni (II) в холостой (контрольной) пробе определяют для каждой новой партии используемых реактивов.

11.2. Пробы с содержанием органического углерода выше 50 мг/дм 3 .

К 10 см 3 пробы, подкисленной до рН 2 - 3 приливают 0,1 см 3 30 % раствора перекиси водорода и подвергают пробу ультрафиолетовому облучению для разрушения органических веществ при температуре 90 °С в течение 1 - 2 часов в соответствии с руководством по эксплуатации установки для обработки проб ультрафиолетовым облучением.

11.2.2. Анализ.

Анализ подготовленной по п. пробы проводят по п. или в зависимости от содержания Ni (II) в пробе.

Таблица 3

ВЫБОР АЛИКВОТНОЙ ЧАСТИ ПРОБЫ ДЛЯ АНАЛИЗА.

Поддиапазон измеряемых концентраций ионов никеля (II), мкг/дм 3

Степень разбавления пробы

Объем пробы, добавляемой в ячейку, см 3

Норматив оперативного контроля воспроизводимости, D, % (Р =0,95, M =2)

от 1,0 до 50,0 включ.

св. 50 до 500 включ.

св. 500 до 2500 включ.

13.2. Оперативный контроль погрешности.

Образцами для контроля являются реальные пробы питьевых, природных и сточных вод, взятые в традиционных точках контроля состава вод. Объем отобранной пробы для контроля должен соответствовать удвоенному объему, необходимому для проведения анализа по методике. Отобранный объем делят на две равные части, первую из которых анализируют в точном соответствии с прописью методики и получают результат анализа исходной пробы - X, вторую разбавляют дистиллированной водой в два раза и снова делят на две равные части, первую из которых анализируют в точном соответствии с прописью методики, получая результат анализа рабочей пробы, разбавленной в два раза - X", а во вторую часть делают добавку определяемого компонента (С) и анализируют в точном соответствии с прописью методики, получая результат анализа рабочей пробы, разбавленной в два раза, с добавкой - X". (Результаты анализа исходной рабочей пробы - X, рабочей пробы, разбавленной в два раза - X, и рабочей пробы, разбавленной в два раза с добавкой - X" следует получать в одинаковых условиях, т.е. их получает один аналитик с использованием одного набора мерной посуды, одной партии реактивов и т.д.). Решение об удовлетворительной погрешности принимают при выполнении условия:

где X - результат анализа рабочей пробы;

X" - результат анализа рабочей пробы, разбавленной в два раза;

X" - результат анализа рабочей пробы, разбавленной в два раза, с добавкой определяемого компонента;

С - величина добавки определяемого компонента;

К - норматив оперативного контроля погрешности.

Норматив оперативного контроля погрешности (допускаемое значение разности между результатом контрольного измерения реальной пробы, пробы, разбавленной в два раза, пробы, разбавленной в два раза с введенной добавкой и величиной добавки) для доверительной вероятности Р = 0,90 рассчитывают по формуле:

где ∆ сс - характеристика систематической составляющей погрешности, соответствующая содержанию компонента, равному величине добавки,

Мкг/дм 3 (С - содержание компонента в добавке);

Характеристика случайной составляющей погрешности, соответствующая содержанию компонента в разбавленной пробе с добавкой (разбавленной пробе, реальной пробе соответственно),

мкг/дм 3 (Х" - содержание компонента в разбавленной пробе с добавкой);

мкг/дм 3 (X" - содержание компонента в разбавленной пробе);

мкг/дм 3 (X - содержание компонента в реальной пробе).

Оперативный контроль погрешности обязательно проводят при смене партий реактивов и не реже одного раза в неделю.

При превышении норматива оперативного контроля погрешности эксперимент повторяют. При повторном превышении указанного норматива К выясняют причины, приводящие к неудовлетворительным результатам контроля и устраняют их.

13.3. Форма представления результатов анализа.

Результат количественного анализа в документах, предусматривающих его использование, представляют в виде:

результат анализа (X, мкг/дм 3), характеристика погрешности